⚠ ⚠ ⚠
Pay close attention to the listed course modality. If you sign up for a course listed as In-Person (INP) or Blended (BLEN) you will be expected to attend class in person according to the class schedule. If conditions related to the COVID-19 pandemic makes changes to course modality necessary after your registration occurs, these changes will be communicated in advance whenever possible, accompanied by resources for student support.
⚠ ⚠ ⚠

Results

Enrollment and waitlist data for current and upcoming courses refresh every 10 minutes; all other information as of 6:00 AM.


Refine Search Results

SEIS: Software Eng (Grad)

601-01
Found. of Software Dev-Java
 
T 5:45 pm - 9:00 pm
E. Level
 
09/08 - 12/18
35/27/0
Lecture
CRN 42742
3 Cr.
Size: 35
Enrolled: 27
Waitlisted: 0
09/08 - 12/18
M T W Th F Sa Su
 

5:45 pm
9:00 pm
Online

         

Subject: Software Eng (Grad) (SEIS)

CRN: 42742

Online: Sync Distributed | Lecture

Online

  Eric Level

The primary objective of this course is to introduce the Java programming language and how to use it in software development. Students will learn Java programming fundamentals, including variables, expressions, types, declarations, control structures for iteration and selection, classes and their objects, methods, and interfaces. A secondary objective is to give an introduction to fundamental techniques of software development, including work with debuggers, testing frameworks, and source code version control. Students will write multiple programs in Java, practicing these language elements and techniques and learning how to turn requirements into debugged, tested, and correct programs.No previous programming experience in Java, or any other programming language, is required.

3 Credits

603-01
Found. Software Dev-Python
 
M 5:45 pm - 9:00 pm
S. Naqvi
 
09/08 - 12/18
30/27/0
Lecture
CRN 43684
3 Cr.
Size: 30
Enrolled: 27
Waitlisted: 0
09/08 - 12/18
M T W Th F Sa Su

5:45 pm
9:00 pm
Online

           

Subject: Software Eng (Grad) (SEIS)

CRN: 43684

Online: Sync Distributed | Lecture

Online

  Syed Naqvi

This is an introductory software development course, with focus on fundamental and foundational concepts. These concepts include general problem solving and algorithm creation techniques, data types, constants, variables and expressions, Boolean, control flow, and object-oriented concepts. Applying these concepts, we implement programs using the Python language. We will examine its use as both an interpreted and a compiled language, working with data types such as numbers, strings, lists, dictionaries, and sets. Students will learn how to apply Python in managing data. No previous programming experience in Python or any other programming language is required.

3 Credits

603-02
Found. Software Dev-Python
 
F 5:45 pm - 9:00 pm
E. Level
 
09/08 - 12/18
30/17/0
Lecture
CRN 43685
3 Cr.
Size: 30
Enrolled: 17
Waitlisted: 0
09/08 - 12/18
M T W Th F Sa Su
       

5:45 pm
9:00 pm
Online

   

Subject: Software Eng (Grad) (SEIS)

CRN: 43685

Online: Sync Distributed | Lecture

Online

  Eric Level

This is an introductory software development course, with focus on fundamental and foundational concepts. These concepts include general problem solving and algorithm creation techniques, data types, constants, variables and expressions, Boolean, control flow, and object-oriented concepts. Applying these concepts, we implement programs using the Python language. We will examine its use as both an interpreted and a compiled language, working with data types such as numbers, strings, lists, dictionaries, and sets. Students will learn how to apply Python in managing data. No previous programming experience in Python or any other programming language is required.

3 Credits

603-03
Found. Software Dev-Python
 
W 5:45 pm - 9:00 pm
E. Level
 
09/08 - 12/18
30/30/0
Lecture
CRN 43686
3 Cr.
Size: 30
Enrolled: 30
Waitlisted: 0
09/08 - 12/18
M T W Th F Sa Su
   

5:45 pm
9:00 pm
Online

       

Subject: Software Eng (Grad) (SEIS)

CRN: 43686

Online: Sync Distributed | Lecture

Online

  Eric Level

This is an introductory software development course, with focus on fundamental and foundational concepts. These concepts include general problem solving and algorithm creation techniques, data types, constants, variables and expressions, Boolean, control flow, and object-oriented concepts. Applying these concepts, we implement programs using the Python language. We will examine its use as both an interpreted and a compiled language, working with data types such as numbers, strings, lists, dictionaries, and sets. Students will learn how to apply Python in managing data. No previous programming experience in Python or any other programming language is required.

3 Credits

605-01
Technical Communications
 
T 5:45 pm - 9:00 pm
T. Williams
SEIS* 
09/08 - 12/18
30/26/0
Lecture
CRN 42740
3 Cr.
Size: 30
Enrolled: 26
Waitlisted: 0
09/08 - 12/18
M T W Th F Sa Su
 

5:45 pm
9:00 pm
Online

         

Subject: Software Eng (Grad) (SEIS)

CRN: 42740

Online: Sync Distributed | Lecture

Online

Requirements Met:
     Software Technical Elective

  Timothy Williams

Teaches the theory and practice of written and oral communication as used by IT professionals. Emphasizes technical writing style (the logical organization of detailed information written in direct, concise, and unambiguous language), collaboration, best practices when using visuals, and the ethical use of authoritative sources. Assignments include descriptions, instructions, informative and persuasive presentations, and a short, formal research paper. Also covers communication issues related to managerial strategies and tactics, business analysis, and project management. After completing this course, students will be more confident about their ability to communicate effectively in the workplace.

3 Credits

605-02
Technical Communications
 
R 5:45 pm - 9:00 pm
D. Harvey
SEIS* 
09/08 - 12/18
30/13/0
Lecture
CRN 42975
3 Cr.
Size: 30
Enrolled: 13
Waitlisted: 0
09/08 - 12/18
M T W Th F Sa Su
     

5:45 pm
9:00 pm
Online

     

Subject: Software Eng (Grad) (SEIS)

CRN: 42975

Online: Sync Distributed | Lecture

Online

Requirements Met:
     Software Technical Elective

  Dorian Harvey

Teaches the theory and practice of written and oral communication as used by IT professionals. Emphasizes technical writing style (the logical organization of detailed information written in direct, concise, and unambiguous language), collaboration, best practices when using visuals, and the ethical use of authoritative sources. Assignments include descriptions, instructions, informative and persuasive presentations, and a short, formal research paper. Also covers communication issues related to managerial strategies and tactics, business analysis, and project management. After completing this course, students will be more confident about their ability to communicate effectively in the workplace.

3 Credits

610-01
Software Engineering
 
M 5:45 pm - 9:00 pm
M. Dorin
SEIS* 
09/08 - 12/18
35/34/0
Lecture
CRN 42741
3 Cr.
Size: 35
Enrolled: 34
Waitlisted: 0
09/08 - 12/18
M T W Th F Sa Su

5:45 pm
9:00 pm
Online

           

Subject: Software Eng (Grad) (SEIS)

CRN: 42741

Online: Sync Distributed | Lecture

Online

Requirements Met:
     Software Technical Elective

  Michael Dorin

This is a survey course covering software engineering concepts, techniques, and methodologies. Topics covered include software engineering; software process and its difficulties; software life-cycle models; software metrics; project planning including cost estimation; design methodologies including structured design, and object-oriented design; software testing; and software maintenance. A brief review of data structures is included. Prerequisite: SEIS 601 or SEIS 603. SEIS 610 can be taken concurrently with SEIS 601 or SEIS 603.

3 Credits

610-03
Software Engineering
 
See Details
M. Dorin
SEIS* 
TBD
30/25/0
Lecture
CRN 44084
3 Cr.
Size: 30
Enrolled: 25
Waitlisted: 0
M T W Th F Sa Su
         

09/11:
9:00 am
4:00 pm
OSS 313

09/25:
9:00 am
4:00 pm
OSS 313

10/09:
9:00 am
4:00 pm
OSS 313

10/23:
9:00 am
4:00 pm
OSS 313

11/06:
9:00 am
4:00 pm
OSS 313

11/20:
9:00 am
4:00 pm
OSS 313

12/04 - 12/11:
9:00 am
4:00 pm
OSS 313

 

Subject: Software Eng (Grad) (SEIS)

CRN: 44084

In Person | Lecture

St Paul: O'Shaughnessy Science Hall 313
     (Common Good capacity: 38 participants)

Requirements Met:
     Software Technical Elective

  Michael Dorin

This is a survey course covering software engineering concepts, techniques, and methodologies. Topics covered include software engineering; software process and its difficulties; software life-cycle models; software metrics; project planning including cost estimation; design methodologies including structured design, and object-oriented design; software testing; and software maintenance. A brief review of data structures is included. Prerequisite: SEIS 601 or SEIS 603. SEIS 610 can be taken concurrently with SEIS 601 or SEIS 603.

3 Credits

615-01
Dev Ops & Cloud Infrastructure
 
M 5:45 pm - 9:00 pm
J. Baker
SEIS* 
09/08 - 12/18
30/23/0
Lecture
CRN 40194
3 Cr.
Size: 30
Enrolled: 23
Waitlisted: 0
09/08 - 12/18
M T W Th F Sa Su

5:45 pm
9:00 pm
Online

           

Subject: Software Eng (Grad) (SEIS)

CRN: 40194

Online: Sync Distributed | Lecture

Online

Requirements Met:
     Software Technical Elective

  Jason Baker

This course covers the engineering and design of IT infrastructure, focusing on cloud-scale distributed systems and modern DevOps practices. IT infrastructure deployment practices are rapidly changing as organizations build "Infrastructure as code" and adopt cloud computing platforms. We will examine the theory behind these modern practices and the real-world implementation challenges faced by IT organizations. While the lessons will cover a number of theoretical concepts, we will primarily learn by doing. Students will gain hands-on experience with several widely-adopted IT platforms including Github, AWS, and Docker. Prerequisite: SEIS610 Software Engineering. Students can register for SEIS610 and SEIS615 concurrently.

3 Credits

615-02
Dev Ops & Cloud Infrastructure
 
W 5:45 pm - 9:00 pm
R. Chiang
SEIS* 
09/08 - 12/18
30/24/0
Lecture
CRN 40195
3 Cr.
Size: 30
Enrolled: 24
Waitlisted: 0
09/08 - 12/18
M T W Th F Sa Su
   

5:45 pm
9:00 pm
Online

       

Subject: Software Eng (Grad) (SEIS)

CRN: 40195

Online: Sync Distributed | Lecture

Online

Requirements Met:
     Software Technical Elective

  Ron Chiang

This course covers the engineering and design of IT infrastructure, focusing on cloud-scale distributed systems and modern DevOps practices. IT infrastructure deployment practices are rapidly changing as organizations build "Infrastructure as code" and adopt cloud computing platforms. We will examine the theory behind these modern practices and the real-world implementation challenges faced by IT organizations. While the lessons will cover a number of theoretical concepts, we will primarily learn by doing. Students will gain hands-on experience with several widely-adopted IT platforms including Github, AWS, and Docker. Prerequisite: SEIS610 Software Engineering. Students can register for SEIS610 and SEIS615 concurrently.

3 Credits

615-03
Dev Ops & Cloud Infrastructure
 
F 5:45 pm - 9:00 pm
R. Chiang
SEIS* 
09/08 - 12/18
30/7/0
Lecture
CRN 40196
3 Cr.
Size: 30
Enrolled: 7
Waitlisted: 0
09/08 - 12/18
M T W Th F Sa Su
       

5:45 pm
9:00 pm
Online

   

Subject: Software Eng (Grad) (SEIS)

CRN: 40196

Online: Sync Distributed | Lecture

Online

Requirements Met:
     Software Technical Elective

  Ron Chiang

This course covers the engineering and design of IT infrastructure, focusing on cloud-scale distributed systems and modern DevOps practices. IT infrastructure deployment practices are rapidly changing as organizations build "Infrastructure as code" and adopt cloud computing platforms. We will examine the theory behind these modern practices and the real-world implementation challenges faced by IT organizations. While the lessons will cover a number of theoretical concepts, we will primarily learn by doing. Students will gain hands-on experience with several widely-adopted IT platforms including Github, AWS, and Docker. Prerequisite: SEIS610 Software Engineering. Students can register for SEIS610 and SEIS615 concurrently.

3 Credits

615-04
Dev Ops & Cloud Infrastructure
 
R 5:45 pm - 9:00 pm
R. Chiang
SEIS* 
09/08 - 12/18
30/10/0
Lecture
CRN 40197
3 Cr.
Size: 30
Enrolled: 10
Waitlisted: 0
09/08 - 12/18
M T W Th F Sa Su
     

5:45 pm
9:00 pm
Online

     

Subject: Software Eng (Grad) (SEIS)

CRN: 40197

Online: Sync Distributed | Lecture

Online

Requirements Met:
     Software Technical Elective

  Ron Chiang

This course covers the engineering and design of IT infrastructure, focusing on cloud-scale distributed systems and modern DevOps practices. IT infrastructure deployment practices are rapidly changing as organizations build "Infrastructure as code" and adopt cloud computing platforms. We will examine the theory behind these modern practices and the real-world implementation challenges faced by IT organizations. While the lessons will cover a number of theoretical concepts, we will primarily learn by doing. Students will gain hands-on experience with several widely-adopted IT platforms including Github, AWS, and Docker. Prerequisite: SEIS610 Software Engineering. Students can register for SEIS610 and SEIS615 concurrently.

3 Credits

627-01
Software Planning & Testing
 
R 5:45 pm - 9:00 pm
S. Naqvi
 
09/08 - 12/18
30/22/0
Lecture
CRN 43787
3 Cr.
Size: 30
Enrolled: 22
Waitlisted: 0
09/08 - 12/18
M T W Th F Sa Su
     

5:45 pm
9:00 pm
Online

     

Subject: Software Eng (Grad) (SEIS)

CRN: 43787

Online: Sync Distributed | Lecture

Online

  Syed Naqvi

This course presents a software planning and quality perspective that guides the selection of tools and application of techniques needed for the successful completion of software development projects. A successful software project must manage many different, yet integrated activities. These activities include software development lifecycle tasks such as requirements gathering, software design, and code implementation. Many other activities also need to be planned and managed, such as project scope, schedule, and cost. In any successful software project, when issues arise (e.g. the requirements change, a defect in the software is discovered, scheduled activities do not go as planned, etc.) they need to be prioritized and appropriately addressed. To minimize the impact of software quality issues, software testing and quality improvement activities need to be planned, executed and coordinated. The purpose of this course is to learn the foundational concepts and practices needed to produce software that is completed on time, within budget, and with the necessary scope and quality required. While software development activities are covered in other courses, this course will focus more on the software planning and testing activities. Project management topics covered include: integration management, scope management, time management, cost management, and quality management from a software planning perspective. Software testing and quality topics covered include: testing terms and concepts, lower-level testing (e.g. unit and integration testing), higher-level testing (e.g. system and acceptance testing), and test automation. Agile Project and Product Management using Scrum will be introduced as an approach for directing these activities and laying the foundation for continuous process improvement and quality assurance. Prerequisite: SEIS 610 AND SEIS 601/603

3 Credits

630-02
Database Mgmt Systems & Design
 
W 5:45 pm - 9:00 pm
A. Kazemzadeh
SEIS* 
09/08 - 12/18
30/27/0
Lecture
CRN 42743
3 Cr.
Size: 30
Enrolled: 27
Waitlisted: 0
09/08 - 12/18
M T W Th F Sa Su
   

5:45 pm
9:00 pm
OSS 313

       

Subject: Software Eng (Grad) (SEIS)

CRN: 42743

In Person | Lecture

St Paul: O'Shaughnessy Science Hall 313
     (Common Good capacity: 38 participants)

Requirements Met:
     Software Data Mgmt Conc
     Software Technical Elective

  Abe Kazemzadeh

This course focuses on database management system concepts, database design, and implementation. Conceptual data modeling using Entity Relationships (ER) is used to capture the requirements of a database design. Relational model concepts are introduced and mapping from ER to relational model is discussed. Logical database design, normalization, and indexing strategies are also discussed to aid system performance. Structured Query Language (SQL) is used to work with a database using the Oracle platform. The course also covers query optimization and execution strategies, concurrency control, locking, deadlocks, security, and backup/recovery concepts. Non-relational databases are also briefly introduced. Students will use Oracle and/or SQL Server to design and create a database using SQL as their project. Prerequisite: SEIS 610. SEIS 630 may be taken concurrently with SEIS610.

3 Credits

630-03
Database Mgmt Systems & Design
 
F 5:45 pm - 9:00 pm
A. Kazemzadeh
SEIS* 
09/08 - 12/18
30/27/0
Lecture
CRN 43689
3 Cr.
Size: 30
Enrolled: 27
Waitlisted: 0
09/08 - 12/18
M T W Th F Sa Su
       

5:45 pm
9:00 pm
Online

   

Subject: Software Eng (Grad) (SEIS)

CRN: 43689

Online: Sync Distributed | Lecture

Online

Requirements Met:
     Software Data Mgmt Conc
     Software Technical Elective

  Abe Kazemzadeh

This course focuses on database management system concepts, database design, and implementation. Conceptual data modeling using Entity Relationships (ER) is used to capture the requirements of a database design. Relational model concepts are introduced and mapping from ER to relational model is discussed. Logical database design, normalization, and indexing strategies are also discussed to aid system performance. Structured Query Language (SQL) is used to work with a database using the Oracle platform. The course also covers query optimization and execution strategies, concurrency control, locking, deadlocks, security, and backup/recovery concepts. Non-relational databases are also briefly introduced. Students will use Oracle and/or SQL Server to design and create a database using SQL as their project. Prerequisite: SEIS 610. SEIS 630 may be taken concurrently with SEIS610.

3 Credits

630-04
Database Mgmt Systems & Design
 
See Details
A. Kazemzadeh
SEIS* 
TBD
30/5/0
Lecture
CRN 43386
3 Cr.
Size: 30
Enrolled: 5
Waitlisted: 0
M T W Th F Sa Su
         

09/18:
9:00 am
4:00 pm
Online

10/02:
9:00 am
4:00 pm
Online

10/16:
9:00 am
4:00 pm
Online

10/30:
9:00 am
4:00 pm
Online

11/13:
9:00 am
4:00 pm
Online

12/04:
9:00 am
4:00 pm
Online

12/18:
9:00 am
4:00 pm
Online

 

Subject: Software Eng (Grad) (SEIS)

CRN: 43386

Online: Sync Distributed | Lecture

Online

Requirements Met:
     Software Data Mgmt Conc
     Software Technical Elective

  Abe Kazemzadeh

This course focuses on database management system concepts, database design, and implementation. Conceptual data modeling using Entity Relationships (ER) is used to capture the requirements of a database design. Relational model concepts are introduced and mapping from ER to relational model is discussed. Logical database design, normalization, and indexing strategies are also discussed to aid system performance. Structured Query Language (SQL) is used to work with a database using the Oracle platform. The course also covers query optimization and execution strategies, concurrency control, locking, deadlocks, security, and backup/recovery concepts. Non-relational databases are also briefly introduced. Students will use Oracle and/or SQL Server to design and create a database using SQL as their project. Prerequisite: SEIS 610. SEIS 630 may be taken concurrently with SEIS610.

3 Credits

631-01
Foundations of Data Analysis
 
T 5:45 pm - 9:00 pm
A. Sur
SEIS* 
09/08 - 12/18
28/21/0
Lecture
CRN 43454
3 Cr.
Size: 28
Enrolled: 21
Waitlisted: 0
09/08 - 12/18
M T W Th F Sa Su
 

5:45 pm
9:00 pm
Online

         

Subject: Software Eng (Grad) (SEIS)

CRN: 43454

Online: Sync Distributed | Lecture

Online

Requirements Met:
     Software Technical Elective

  Aparajita Sur

This course provides a broad introduction to the subject of data analysis by introducing common techniques that are essential for analyzing and deriving meaningful information from datasets. In particular, the course will focus on relevant methods for performing data collection, representation, transformation, and data-driven decision making. Students will also develop proficiency in the widely used R language which will be used throughout the course to reinforce the topics covered. Prerequisite: SEIS 601 or SEIS 603 (may be taken concurrently).

3 Credits

631-02
Foundations of Data Analysis
 
R 5:45 pm - 9:00 pm
S. Samorodnitsky
SEIS* 
09/08 - 12/18
30/19/0
Lecture
CRN 43510
3 Cr.
Size: 30
Enrolled: 19
Waitlisted: 0
09/08 - 12/18
M T W Th F Sa Su
     

5:45 pm
9:00 pm
Online

     

Subject: Software Eng (Grad) (SEIS)

CRN: 43510

Online: Sync Distributed | Lecture

Online

Requirements Met:
     Software Technical Elective

  Sarah Samorodnitsky

This course provides a broad introduction to the subject of data analysis by introducing common techniques that are essential for analyzing and deriving meaningful information from datasets. In particular, the course will focus on relevant methods for performing data collection, representation, transformation, and data-driven decision making. Students will also develop proficiency in the widely used R language which will be used throughout the course to reinforce the topics covered. Prerequisite: SEIS 601 or SEIS 603 (may be taken concurrently).

3 Credits

631-03
Foundations of Data Analysis
 
W 5:45 pm - 9:00 pm
A. Glancy
SEIS* 
09/08 - 12/18
30/27/0
Lecture
CRN 43690
3 Cr.
Size: 30
Enrolled: 27
Waitlisted: 0
09/08 - 12/18
M T W Th F Sa Su
   

5:45 pm
9:00 pm
Online

       

Subject: Software Eng (Grad) (SEIS)

CRN: 43690

Online: Sync Distributed | Lecture

Online

Requirements Met:
     Software Technical Elective

  Aran Glancy

This course provides a broad introduction to the subject of data analysis by introducing common techniques that are essential for analyzing and deriving meaningful information from datasets. In particular, the course will focus on relevant methods for performing data collection, representation, transformation, and data-driven decision making. Students will also develop proficiency in the widely used R language which will be used throughout the course to reinforce the topics covered. Prerequisite: SEIS 601 or SEIS 603 (may be taken concurrently).

3 Credits

632-01
Data Analytics & Visualization
 
M 5:45 pm - 9:00 pm
C. Truempi
LL.MSEIS* 
09/08 - 12/18
30/29/0
Lecture
CRN 43425
3 Cr.
Size: 30
Enrolled: 29
Waitlisted: 0
09/08 - 12/18
M T W Th F Sa Su

5:45 pm
9:00 pm
Online

           

Subject: Software Eng (Grad) (SEIS)

CRN: 43425

Online: Sync Distributed | Lecture

Online

Requirements Met:
     LLM/MSL Elective
     Software Technical Elective

  Craig Truempi

The course provides an introduction to concepts and techniques used in field of data analytics and visualization. Data analytics is defined to be the science of examining raw data with the purpose of discovering knowledge by analyzing current and historical facts. Insights discovered from the data are then communicated using data visualization. Topics covered in the course include predictive analytics, pattern discovery, and best practices for creating effective data visualizations. Through practical application of the above topics, students will also develop proficiency in using analytics tools.

3 Credits

632-02
Data Analytics & Visualization
 
R 5:45 pm - 9:00 pm
M. Rege
LL.MSEIS* 
09/08 - 12/18
30/29/0
Lecture
CRN 43452
3 Cr.
Size: 30
Enrolled: 29
Waitlisted: 0
09/08 - 12/18
M T W Th F Sa Su
     

5:45 pm
9:00 pm
Online

     

Subject: Software Eng (Grad) (SEIS)

CRN: 43452

Online: Sync Distributed | Lecture

Online

Requirements Met:
     LLM/MSL Elective
     Software Technical Elective

  Manjeet Rege

The course provides an introduction to concepts and techniques used in field of data analytics and visualization. Data analytics is defined to be the science of examining raw data with the purpose of discovering knowledge by analyzing current and historical facts. Insights discovered from the data are then communicated using data visualization. Topics covered in the course include predictive analytics, pattern discovery, and best practices for creating effective data visualizations. Through practical application of the above topics, students will also develop proficiency in using analytics tools.

3 Credits

632-03
Data Analytics & Visualization
 
See Details
M. Rege
LL.MSEIS* 
TBD
30/21/0
Lecture
CRN 43513
3 Cr.
Size: 30
Enrolled: 21
Waitlisted: 0
M T W Th F Sa Su
         

09/11:
9:00 am
4:00 pm
Online

09/25:
9:00 am
4:00 pm
Online

10/09:
9:00 am
4:00 pm
Online

10/23:
9:00 am
4:00 pm
Online

11/06:
9:00 am
4:00 pm
Online

11/20:
9:00 am
4:00 pm
Online

12/11:
9:00 am
4:00 pm
Online

 

Subject: Software Eng (Grad) (SEIS)

CRN: 43513

Online: Sync Distributed | Lecture

Online

Requirements Met:
     LLM/MSL Elective
     Software Technical Elective

  Manjeet Rege

The course provides an introduction to concepts and techniques used in field of data analytics and visualization. Data analytics is defined to be the science of examining raw data with the purpose of discovering knowledge by analyzing current and historical facts. Insights discovered from the data are then communicated using data visualization. Topics covered in the course include predictive analytics, pattern discovery, and best practices for creating effective data visualizations. Through practical application of the above topics, students will also develop proficiency in using analytics tools.

3 Credits

635-01
Software Analysis and Design
 
T 5:45 pm - 9:00 pm
M. Dorin
SEIS* 
09/08 - 12/18
30/12/0
Lecture
CRN 42744
3 Cr.
Size: 30
Enrolled: 12
Waitlisted: 0
09/08 - 12/18
M T W Th F Sa Su
 

5:45 pm
9:00 pm
Online

         

Subject: Software Eng (Grad) (SEIS)

CRN: 42744

Online: Sync Distributed | Lecture

Online

Requirements Met:
     Software Object-Oriented Conc
     Software Technical Elective

  Michael Dorin

This course covers basic object-oriented techniques for analyzing software specifications and designing and implementing correct and useful software systems. Modern Agile iterative and incremental processes for software development such as Scrum and Kanban are emphasized. The Unified Modeling Language (UML) is reviewed, along with approaches to testing, debugging, and source code version control. Other topics include domain modeling, design reviews, responsibility-driven design, software class discovery and design, converting designs to code, basic design and architectural patterns, package designs, and deployment. Students will work on an object-oriented team project, applying concepts and techniques to describe and create a working software system. They will also learn the basics of Continuous Integration (CI) by using standard development environments, techniques, and tools in doing their teamwork. Prerequisite: SEIS 601 and SEIS 610.

3 Credits

663-01
IT Security and Networking
 
T 5:45 pm - 9:00 pm
M. Mattox
SEIS* 
09/08 - 12/18
30/8/0
Lecture
CRN 43424
3 Cr.
Size: 30
Enrolled: 8
Waitlisted: 0
09/08 - 12/18
M T W Th F Sa Su
 

5:45 pm
9:00 pm
Online

         

Subject: Software Eng (Grad) (SEIS)

CRN: 43424

Online: Sync Distributed | Lecture

Online

Requirements Met:
     Software Technical Elective

  Melinda Mattox

This course will provide the foundation of information technology security, including authentication, authorization, access management, physical security, network security (firewalls, intrusion detection), application security (software and database), security regulations, and disaster recovery. We will explore social engineering and other human factors and the impact to security. There will be an emphasis on local area networking (LAN) and Internet architecture and protocols, including TCP/IP and the OSI layers. We study protocol details, the way they relate and interact with each other, and how they are applied in real systems. Prerequisite: SEIS610

3 Credits

663-02
IT Security and Networking
 
R 5:45 pm - 9:00 pm
J. Denning
SEIS* 
09/08 - 12/18
30/15/0
Lecture
CRN 43511
3 Cr.
Size: 30
Enrolled: 15
Waitlisted: 0
09/08 - 12/18
M T W Th F Sa Su
     

5:45 pm
9:00 pm
Online

     

Subject: Software Eng (Grad) (SEIS)

CRN: 43511

Online: Sync Distributed | Lecture

Online

Requirements Met:
     Software Technical Elective

  Julie Denning

This course will provide the foundation of information technology security, including authentication, authorization, access management, physical security, network security (firewalls, intrusion detection), application security (software and database), security regulations, and disaster recovery. We will explore social engineering and other human factors and the impact to security. There will be an emphasis on local area networking (LAN) and Internet architecture and protocols, including TCP/IP and the OSI layers. We study protocol details, the way they relate and interact with each other, and how they are applied in real systems. Prerequisite: SEIS610

3 Credits

664-01
Information Tech. Delivery
 
F 5:45 pm - 9:00 pm
C. Betz
SEIS* 
09/08 - 12/18
30/11/0
Lecture
CRN 43538
3 Cr.
Size: 30
Enrolled: 11
Waitlisted: 0
09/08 - 12/18
M T W Th F Sa Su
       

5:45 pm
9:00 pm
Online

   

Subject: Software Eng (Grad) (SEIS)

CRN: 43538

Online: Sync Distributed | Lecture

Online

Requirements Met:
     Software Technical Elective

  Charles Betz

This broad survey course covers IT and digital delivery, operations, and management in both theory and practice. Topics include IT and digital value; digital infrastructure including cloud; Agile and Lean influences including DevOps; product and service management; work management; operations management, coordination including process management; IT investment and portfolio; organization and cultural factors; IT management frameworks; IT governance, risk, security, compliance; enterprise information management; and enterprise architecture. Class sessions emphasize hands-on, team-based learning. Introductory Linux command-line skills are covered. Prerequisite: SEIS 610

3 Credits

709-01
Enterprise Archit & Strategy
 
R 5:45 pm - 9:00 pm
A. Tahir
 
09/08 - 12/18
30/6/0
Lecture
CRN 40598
3 Cr.
Size: 30
Enrolled: 6
Waitlisted: 0
09/08 - 12/18
M T W Th F Sa Su
     

5:45 pm
9:00 pm
Online

     

Subject: Software Eng (Grad) (SEIS)

CRN: 40598

Online: Sync Distributed | Lecture

Online

  Asim Tahir

This course provides students with a theoretical and practical understanding of Strategy and Enterprise Architecture (EA).  It studies how EA enables organizations to effectively accomplish their business goals.  Specifically, the course analyzes the relationships among business strategies, IT strategies, business, applications, information, and technology architectures.  It also examines current industry trends such as: design thinking, digital transformation, cloud migration, and introduces students to EA implementation frameworks and tools.

3 Credits

710-01
Blockchain
 
M 5:45 pm - 9:00 pm
D. Duccini
 
09/08 - 12/18
30/9/0
Lecture
CRN 40723
3 Cr.
Size: 30
Enrolled: 9
Waitlisted: 0
09/08 - 12/18
M T W Th F Sa Su

5:45 pm
9:00 pm
Online

           

Subject: Software Eng (Grad) (SEIS)

CRN: 40723

Online: Sync Distributed | Lecture

Online

  David Duccini

This course will examine the confluence of technologies that underpin blockchain-based distributed ledgers that first appeared in cryptocurrencies like Bitcoin.New terminology is introduced, followed by discussions regarding why this technology is disruptively powerful and a philosophical inquiry into the nature of money itself.The course breaks down the role of “mining” and demonstrates why the economics of the current implementations are not scalable (or even profitable). The process of building blocks one technology at a time from the underlying revision control system, the communication channel known as “gossip,” to achieving consensus in both a trusted and untrusted world will be covered.Students will examine practical case studies beyond cryptocurrencies, which will include critical identification of when these technologies are not practical. Finally, the course will conclude with an in-depth exploration into Smart Documents and Smart Contracts and their possible outcomes.

3 Credits

732-01
Data Warehousing & Bus Intel
 
T 5:45 pm - 9:00 pm
J. Taddese
SEIS* 
09/08 - 12/18
30/27/0
Lecture
CRN 43009
3 Cr.
Size: 30
Enrolled: 27
Waitlisted: 0
09/08 - 12/18
M T W Th F Sa Su
 

5:45 pm
9:00 pm
Online

         

Subject: Software Eng (Grad) (SEIS)

CRN: 43009

Online: Sync Distributed | Lecture

Online

Requirements Met:
     Software Data Mgmt Conc
     Software Technical Elective

  Jote Taddese

In order to build and maintain a successful data warehouse, it is important to understand all of its components and how they fit together. This course will cover data warehouse and data mart lifecycle phases while focusing on infrastructure, design, and management issues. The course project will provide an opportunity to for hands-on experience with some of the available tools and technologies. Topics include: differences between data warehouses and traditional database systems (OLTP), multidimensional analysis and design, building data warehouses using "cube" vs. RDBMS (Star schema, etc.), planning for data warehouses, extraction transformation and loading (ETL), online analytical processing (OLAP), data mining, quality and cleansing, common pitfalls to avoid when designing, implementing and maintaining data warehouse environments, and the impact of new technologies (data webhouse, clickstream, XML). Prerequisite: SEIS630

3 Credits

732-02
Data Warehousing & Bus Intel
 
R 5:45 pm - 9:00 pm
C. Olsen
SEIS* 
09/08 - 12/18
30/30/0
Lecture
CRN 43542
3 Cr.
Size: 30
Enrolled: 30
Waitlisted: 0
09/08 - 12/18
M T W Th F Sa Su
     

5:45 pm
9:00 pm
Online

     

Subject: Software Eng (Grad) (SEIS)

CRN: 43542

Online: Sync Distributed | Lecture

Online

Requirements Met:
     Software Data Mgmt Conc
     Software Technical Elective

  Carmen Olsen

In order to build and maintain a successful data warehouse, it is important to understand all of its components and how they fit together. This course will cover data warehouse and data mart lifecycle phases while focusing on infrastructure, design, and management issues. The course project will provide an opportunity to for hands-on experience with some of the available tools and technologies. Topics include: differences between data warehouses and traditional database systems (OLTP), multidimensional analysis and design, building data warehouses using "cube" vs. RDBMS (Star schema, etc.), planning for data warehouses, extraction transformation and loading (ETL), online analytical processing (OLAP), data mining, quality and cleansing, common pitfalls to avoid when designing, implementing and maintaining data warehouse environments, and the impact of new technologies (data webhouse, clickstream, XML). Prerequisite: SEIS630

3 Credits

735-01
Healthcare and AI Case Study
 
R 5:45 pm - 9:00 pm
C. Lai
SEIS* 
09/08 - 12/18
30/11/0
Lecture
CRN 40644
3 Cr.
Size: 30
Enrolled: 11
Waitlisted: 0
09/08 - 12/18
M T W Th F Sa Su
     

5:45 pm
9:00 pm
Online

     

Subject: Software Eng (Grad) (SEIS)

CRN: 40644

Online: Sync Distributed | Lecture

Online

Requirements Met:
     Software Data Mgmt Conc
     Software Technical Elective

  Chih Lai

The healthcare data is inherently heterogeneous with numeric health records, semi-structural medical text, and medical images. This course will discuss how to apply the latest artificial intelligence approaches in analyzing different types of healthcare data. Real-world projects to be discussed in this course include (1) training artificial intelligence models to learn patterns from 16-million medical papers and doctors’ notes for predicting potential disease outcomes, (2) analyzing patient health records to detect frequent medical sequences for treatment and prevention (3) applying machine vision methods in analyzing fish embryo images for identifying morphological changes due to toxic chemical exposure, (4) using deep-learning methods to analyze motions in telemedicine videos, (5) building clinic decision support systems to detect possible prescription errors, (6) querying databases on National Library of Medicine to enhance medical decisions, (7) imputing medical data with up to 95% missing values. Prerequisites: SEIS 639 or SEIS 764

3 Credits

736-01
Big Data Engineering
 
W 5:45 pm - 9:00 pm
A. Roy
SEIS* 
09/08 - 12/18
30/20/0
Lecture
CRN 43304
3 Cr.
Size: 30
Enrolled: 20
Waitlisted: 0
09/08 - 12/18
M T W Th F Sa Su
   

5:45 pm
9:00 pm
Online

       

Subject: Software Eng (Grad) (SEIS)

CRN: 43304

Online: Sync Distributed | Lecture

Online

Requirements Met:
     Software Data Mgmt Conc
     Software Technical Elective

  Abhishek Roy

As data is becoming more and more ubiquitous, the need to consume it to perform computations and power intelligent systems is also becoming more important. Bigger and more powerful neural networks need a large amount of data to be more accurate in performing tasks and making decisions. This means that it is increasingly important to understand the architecture and data plumbing for such sophisticated systems of the future. This course provides a broad coverage of the building blocks of a modern big data architecture which is fast, scalable and reliable. Major topics covered in this course include: (1) persistent storage and data organization (2) data ingestion and integration, (3) batch and stream processing, (4) modern cloud architectures, and (5) a real life example of geospatial analytics using such architecture. Students will complete hands on exercises leveraging big data tools to build data pipelines. Prerequisites: (SEIS 601 or SEIS 603) and SEIS 630. May take concurrently with SEIS 737.

3 Credits

736-02
Big Data Engineering
 
R 5:45 pm - 9:00 pm
C. Lunke
SEIS* 
09/08 - 12/18
30/24/0
Lecture
CRN 43451
3 Cr.
Size: 30
Enrolled: 24
Waitlisted: 0
09/08 - 12/18
M T W Th F Sa Su
     

5:45 pm
9:00 pm
Online

     

Subject: Software Eng (Grad) (SEIS)

CRN: 43451

Online: Sync Distributed | Lecture

Online

Requirements Met:
     Software Data Mgmt Conc
     Software Technical Elective

  Cort Lunke

As data is becoming more and more ubiquitous, the need to consume it to perform computations and power intelligent systems is also becoming more important. Bigger and more powerful neural networks need a large amount of data to be more accurate in performing tasks and making decisions. This means that it is increasingly important to understand the architecture and data plumbing for such sophisticated systems of the future. This course provides a broad coverage of the building blocks of a modern big data architecture which is fast, scalable and reliable. Major topics covered in this course include: (1) persistent storage and data organization (2) data ingestion and integration, (3) batch and stream processing, (4) modern cloud architectures, and (5) a real life example of geospatial analytics using such architecture. Students will complete hands on exercises leveraging big data tools to build data pipelines. Prerequisites: (SEIS 601 or SEIS 603) and SEIS 630. May take concurrently with SEIS 737.

3 Credits

737-01
Big Data Management
 
T 5:45 pm - 9:00 pm
A. Chaudhry
 
09/08 - 12/18
30/30/0
Lecture
CRN 43427
3 Cr.
Size: 30
Enrolled: 30
Waitlisted: 0
09/08 - 12/18
M T W Th F Sa Su
 

5:45 pm
9:00 pm
Online

         

Subject: Software Eng (Grad) (SEIS)

CRN: 43427

Online: Sync Distributed | Lecture

Online

  Asher Chaudhry

This course covers the technical concepts of managing vast amount of unstructured, semi-structured and structured data, collectively called "Big Data". Due to the sheer volume of Big Data, traditional approaches to managing databases does not work well for Big data and does not perform as expected. A distributed architecture for both the file system and the operating system is needed. Some of the techniques used in managing Big Data have the origins in the research and the developments that have been going on for decades in the area of parallel processing and distributed database management systems. This course focuses on why big data sets must be distributed and the issues that distribution introduces. The basic concepts on which distributed data sets are handled are discussed first. Once a foundation is defined, software tools that we use to work with big data sets are studied to provide an in-depth analysis of the concepts introduced. Specifically, we will study the issues distributed data design, data fragmentation, data replication, distributed fault tolerance/recovery. We will also study the use of Hadoop, Pig, Hive, and HBase in dealing big data sets and use real life examples of how these open source software are used. Prerequisites:(SEIS 601 or SEIS 603) and SEIS 630. May take concurrently with SEIS 736.

3 Credits

737-02
Big Data Management
 
W 5:45 pm - 9:00 pm
K. Stahl
 
09/08 - 12/18
30/27/0
Lecture
CRN 43569
3 Cr.
Size: 30
Enrolled: 27
Waitlisted: 0
09/08 - 12/18
M T W Th F Sa Su
   

5:45 pm
9:00 pm
Online

       

Subject: Software Eng (Grad) (SEIS)

CRN: 43569

Online: Sync Distributed | Lecture

Online

  Kyle Stahl

This course covers the technical concepts of managing vast amount of unstructured, semi-structured and structured data, collectively called "Big Data". Due to the sheer volume of Big Data, traditional approaches to managing databases does not work well for Big data and does not perform as expected. A distributed architecture for both the file system and the operating system is needed. Some of the techniques used in managing Big Data have the origins in the research and the developments that have been going on for decades in the area of parallel processing and distributed database management systems. This course focuses on why big data sets must be distributed and the issues that distribution introduces. The basic concepts on which distributed data sets are handled are discussed first. Once a foundation is defined, software tools that we use to work with big data sets are studied to provide an in-depth analysis of the concepts introduced. Specifically, we will study the issues distributed data design, data fragmentation, data replication, distributed fault tolerance/recovery. We will also study the use of Hadoop, Pig, Hive, and HBase in dealing big data sets and use real life examples of how these open source software are used. Prerequisites:(SEIS 601 or SEIS 603) and SEIS 630. May take concurrently with SEIS 736.

3 Credits

737-04
Big Data Management
 
R 5:45 pm - 9:00 pm
K. Stahl
 
09/08 - 12/18
30/7/0
Online: Synchronous
CRN 45731
3 Cr.
Size: 30
Enrolled: 7
Waitlisted: 0
09/08 - 12/18
M T W Th F Sa Su
     

5:45 pm
9:00 pm
Online

     

Subject: Software Eng (Grad) (SEIS)

CRN: 45731

Online: Sync Distributed | Online: Synchronous

Online

  Kyle Stahl

This course covers the technical concepts of managing vast amount of unstructured, semi-structured and structured data, collectively called "Big Data". Due to the sheer volume of Big Data, traditional approaches to managing databases does not work well for Big data and does not perform as expected. A distributed architecture for both the file system and the operating system is needed. Some of the techniques used in managing Big Data have the origins in the research and the developments that have been going on for decades in the area of parallel processing and distributed database management systems. This course focuses on why big data sets must be distributed and the issues that distribution introduces. The basic concepts on which distributed data sets are handled are discussed first. Once a foundation is defined, software tools that we use to work with big data sets are studied to provide an in-depth analysis of the concepts introduced. Specifically, we will study the issues distributed data design, data fragmentation, data replication, distributed fault tolerance/recovery. We will also study the use of Hadoop, Pig, Hive, and HBase in dealing big data sets and use real life examples of how these open source software are used. Prerequisites:(SEIS 601 or SEIS 603) and SEIS 630. May take concurrently with SEIS 736.

3 Credits

743-01
Computer Architecture
 
T 5:45 pm - 9:00 pm
J. Kruse
SEIS* 
09/08 - 12/18
30/4/0
Lecture
CRN 44104
3 Cr.
Size: 30
Enrolled: 4
Waitlisted: 0
09/08 - 12/18
M T W Th F Sa Su
 

5:45 pm
9:00 pm
Online

         

Subject: Software Eng (Grad) (SEIS)

CRN: 44104

Online: Sync Distributed | Lecture

Online

Requirements Met:
     Software Embedded Systems Conc
     Software Technical Elective

  John Kruse

Computers have changed fundamentally during recent years. The performance of software systems is dramatically affected by how well software designers understand the basic hardware techniques at work in a system. The objective of this course is to provide a firm grounding in principles and techniques to all software engineers including compiler writers, operating systems designers, database programmers, and real-time systems programmers. The course will show relationship between hardware and software and will focus on the concepts that are the basis for modern computers. This course will cover performance issues, instruction set design, processor implementation techniques, pipelining, parallel processing, vector processing, and memory hierarchy including cache memory, input/output factors, RISC architecture, and multiprocessors. Prerequisite: SEIS610

3 Credits

744-01
Internet of Things
 
M 5:45 pm - 9:00 pm
D. Yarmoluk
SEIS* 
09/08 - 12/18
30/11/0
Lecture
CRN 43539
3 Cr.
Size: 30
Enrolled: 11
Waitlisted: 0
09/08 - 12/18
M T W Th F Sa Su

5:45 pm
9:00 pm
Online

           

Subject: Software Eng (Grad) (SEIS)

CRN: 43539

Online: Sync Distributed | Lecture

Online

Requirements Met:
     Software Technical Elective

  Dan Yarmoluk

As billions of devices are getting connected, the Internet of Things (IoT) has become one of the most talked about technology trends.But IoT is not really about technology and connected devices.At its core it is about business outcomes and people; it is about new ways of doing business, talent and change management; it is about migration to open technologies and open structures based on co-development and ecosystems and partnerships; it is an evolution and guiding philosophy.This course is intended to teach data science and analytics students the value of IoT and how to think of integrating data science concepts (big data, machine learning, visualization) as the key parts of driving human changein an increasingly data- 3driven world.The course is designed to guide emerging data scientists into understanding business value and how to inject data science at the core from data collection of IoT devices to business models delivering the value of data insights.The emerging gap of operational technology (OT) professionals forces the (IT) professionals to think past technology and tools to outcome-based results. This IoT introduction course is targeted at individuals who want to understand what theInternet of Things is, how it evolves from the Internet, what the core technologies and systems are and how it is implemented.

3 Credits

751-01
Web App. Design & Dev.
 
T 5:45 pm - 9:00 pm
M. Tegomoh
SEIS* 
09/08 - 12/18
30/9/0
Lecture
CRN 42746
3 Cr.
Size: 30
Enrolled: 9
Waitlisted: 0
09/08 - 12/18
M T W Th F Sa Su
 

5:45 pm
9:00 pm
Online

         

Subject: Software Eng (Grad) (SEIS)

CRN: 42746

Online: Sync Distributed | Lecture

Online

Requirements Met:
     Software Technical Elective

  Marius Tegomoh

This course introduces the fundamentals of web application design, and development using open standards. Students will learn how to create interactive database- driven media rich web applications. Students will learn both the technical and design aspects of creating effective web applications using a variety of technologies and development tools (mostly open source tools where appropriate). The course culminates in a term project that brings together elements of design and technology into a functioning web application. This is an introductory course and no prior knowledge or experience of web design or web development is required. Prerequisite: SEIS 610.

3 Credits

763-02
Machine Learning
 
M 5:45 pm - 9:00 pm
M. Rege
SEIS* 
09/08 - 12/18
30/30/0
Lecture
CRN 43691
3 Cr.
Size: 30
Enrolled: 30
Waitlisted: 0
09/08 - 12/18
M T W Th F Sa Su

5:45 pm
9:00 pm
Online

           

Subject: Software Eng (Grad) (SEIS)

CRN: 43691

Online: Sync Distributed | Lecture

Online

Requirements Met:
     Software Technical Elective

  Manjeet Rege

Machine Learning builds computational systems that learn from and adapt to the data presented to them. It has become one of the essential pillars in information technology today and provides a basis for several applications we use daily in diverse domains such as engineering, medicine, finance, and commerce. This course covers widely used supervised and unsupervised machine learning algorithms used in industry in technical depth, discussing both the theoretical underpinnings of machine learning techniques and providing hands-on experience in implementing them. Additionally, students will also learn to evaluate effectiveness and avoid common pitfalls in applying machine learning to a given problem. Prerequisite: SEIS 603 and 631

3 Credits

763-03
Machine Learning
 
M 5:45 pm - 9:00 pm
C. Lai
SEIS* 
09/08 - 12/18
30/13/0
Lecture
CRN 43855
3 Cr.
Size: 30
Enrolled: 13
Waitlisted: 0
09/08 - 12/18
M T W Th F Sa Su

5:45 pm
9:00 pm
Online

           

Subject: Software Eng (Grad) (SEIS)

CRN: 43855

Online: Sync Distributed | Lecture

Online

Requirements Met:
     Software Technical Elective

  Chih Lai

Machine Learning builds computational systems that learn from and adapt to the data presented to them. It has become one of the essential pillars in information technology today and provides a basis for several applications we use daily in diverse domains such as engineering, medicine, finance, and commerce. This course covers widely used supervised and unsupervised machine learning algorithms used in industry in technical depth, discussing both the theoretical underpinnings of machine learning techniques and providing hands-on experience in implementing them. Additionally, students will also learn to evaluate effectiveness and avoid common pitfalls in applying machine learning to a given problem. Prerequisite: SEIS 603 and 631

3 Credits

764-01
Artificial Intelligence
 
See Details
M. Rege
 
TBD
30/30/0
Lecture
CRN 43790
3 Cr.
Size: 30
Enrolled: 30
Waitlisted: 0
M T W Th F Sa Su
         

09/18:
9:00 am
4:00 pm
Online

10/02:
9:00 am
4:00 pm
Online

10/16:
9:00 am
4:00 pm
Online

10/30:
9:00 am
4:00 pm
Online

11/13:
9:00 am
4:00 pm
Online

12/04:
9:00 am
4:00 pm
Online

12/18:
9:00 am
4:00 pm
Online

 

Subject: Software Eng (Grad) (SEIS)

CRN: 43790

Online: Sync Distributed | Lecture

Online

  Manjeet Rege

Artificial Intelligence has made significant strides in recent times and has become ubiquitous in the modern world, impacting our lives in different ways. By harnessing the power of deep neural networks, it is now possible to build real-world intelligent applications that outperform human precision in certain tasks. This course provides a broad coverage of AI techniques with a focus on industry application. Major topics covered in this course include: (1) how deep neural networks learn their intelligence, (2) self-learning from raw data, (3) common training problems and solutions, (4) transferring learning from existing AI systems, (5) training AI systems for machine visions with high accuracy, and (6) training time-series AI systems for recognizing sequential patterns. Students will have hands-on exercises for building efficient AI systems. Prerequisite: SEIS 763

3 Credits

764-02
Artificial Intelligence
 
W 5:45 pm - 9:00 pm
C. Lai
 
09/08 - 12/18
30/27/0
Lecture
CRN 43791
3 Cr.
Size: 30
Enrolled: 27
Waitlisted: 0
09/08 - 12/18
M T W Th F Sa Su
   

5:45 pm
9:00 pm
Online

       

Subject: Software Eng (Grad) (SEIS)

CRN: 43791

Online: Sync Distributed | Lecture

Online

  Chih Lai

Artificial Intelligence has made significant strides in recent times and has become ubiquitous in the modern world, impacting our lives in different ways. By harnessing the power of deep neural networks, it is now possible to build real-world intelligent applications that outperform human precision in certain tasks. This course provides a broad coverage of AI techniques with a focus on industry application. Major topics covered in this course include: (1) how deep neural networks learn their intelligence, (2) self-learning from raw data, (3) common training problems and solutions, (4) transferring learning from existing AI systems, (5) training AI systems for machine visions with high accuracy, and (6) training time-series AI systems for recognizing sequential patterns. Students will have hands-on exercises for building efficient AI systems. Prerequisite: SEIS 763

3 Credits


Advanced Search

Day(s) of the Week
Open/Closed Courses